The friction of the orbiting scroll leads to large power consumption and low energy\nefficiency of the scroll compressor. The common methods to solve this problem are high cost and\na complex process. Considering special structures and operating principles to apply the coating\ntechnology on the scroll compressor is a new subject. Given the material of the orbiting scroll being\naluminum alloy, the unbalanced magnetron sputtering technology for the orbiting scroll of the scroll\ncompressor was chosen and the Cr transition layer was coated to enhance the bonding strength.\nMoreover, we innovatively performed an experiment to verify the feasibility of unbalanced magnetron\nsputtering film coating technology for the diamond-like carbon film coated in the scroll compressor.\nThis article elaborates the parameter test methods of the film properties before and after experiments\nand the experimental system components. The results showed that the diamond-like carbon film\nhas low coefficient and high bonding strength, which renders it a good wear-reducing effect and an\nexcellent self-lubricating property. Due to the thin film layer and high operating temperature, the\nthickness should be increased to raise the abrasion resistance. The refrigeration system with the scroll\ncompressor coated with the diamond-like carbon film can satisfy the national standard conditions\nwith low Vickers hardness. Its performance was improved at low speed. Therefore, the unbalanced\nmagnetron sputtering with increased Cr bond layer is a feasible and appropriate technology for\ncoating diamond-like carbon film.
Loading....